Издавна человечество занимается отбором подходящих для удовлетворения потребностей населения растительных культур и животных. Эти знания объединены в науку - селекцию. Генетика, в свою очередь, дает основу для проведения более тщательного отбора и выведения новых сортов и пород, которым присущи особенные качества. В статье рассмотрим описание этих двух наук и особенности их применения.

Что такое генетика?

Наукой о генах называется дисциплина, которая изучает процесс передачи наследственной информации и изменчивость организмов сквозь поколения. Генетика - теоретическая основа селекции, понятие которой описано ниже.

К задачам науки относятся:

  • Исследование механизма хранения и передачи информации от предков к потомкам.
  • Изучение реализации такой информации в процессе индивидуального развития организма с учетом влияния окружающей среды.
  • Изучение причин и механизмов изменчивости живых организмов.
  • Определение взаимосвязи отбора, вариативности и наследственности как факторов развития органического мира.

Наука также участвует в решении практических задач, в чем проявляется значение генетики для селекции:

  • Определение эффективности отбора и выбор наиболее приемлемых типов гибридизации.
  • Контроль развития наследственных факторов с целью усовершенствования объекта до получения более значимых качеств.
  • Получение наследственно измененных форм искусственным путем.
  • Разработка мер, направленных на защиту окружающей среды, например от влияния мутагенов, вредителей.
  • Борьба с наследственными патологиями.
  • Достижение прогресса в создании новых способов селекции.
  • Поиск иных методов генной инженерии.

Объектами науки являются: бактерии, вирусы, человек, животные, растения и грибы.

Основные понятия, применяемые в науке:

  • Наследственность - свойство сохранения и передачи потомкам присущее всем живым организмам, которое нельзя отнять.
  • Ген - часть молекулы ДНК, которая отвечает за определенное качество организма.
  • Изменчивость - способность живого организма приобретать новые качества и терять старые в процессе онтогенеза.
  • Генотип - совокупность генов, наследственная основа организма.
  • Фенотип - совокупность качеств, которые приобретает организм в процессе индивидуального развития.

Этапы развития генетики

Развитие генетики и селекции прошло в несколько этапов. Рассмотрим периоды становления науки о генах:


Методы генетической науки

Генетика, как теоретическая основа селекции, пользуется в своих исследованиях определенными методами.

К ним относятся:

  • Метод гибридизации. Основывается на скрещивании видов с чистой линией, которые отличаются по одному (максимум нескольким) признакам. Цель - получение гибридных поколений, что позволяет анализировать характер наследования признаков и рассчитывать на получение потомства с необходимыми качествами.
  • Метод генеалогии. Основывается на анализе генеалогического древа, что позволяет проследить передачу генетической информации сквозь поколения, приспособленность к заболеваниям, а также составить характеристику ценности особи.
  • Близнецовый метод. Основывается на сравнении монозиготных особей, применяется при необходимости установления степени воздействия паратипических факторов при игнорировании различий в генетике.
  • Цитогенетический метод основывается на проведении анализа ядра и внутриклеточных компонентов, сравнении полученных результатов с нормой по таким параметрам: число хромосом, число их плеч и особенности строения.
  • основывается на изучении функций и строения определенных молекул. Например, применение различных ферментов используется в биотехнологии и генной инженерии.
  • Биофизический метод основывается на исследовании полиморфизма белков плазмы, например молока или крови, что дает информацию о разнообразии популяций.
  • Моносомый метод в качестве основы использует гибридизацию соматических клеток.
  • Феногенетический метод основывается на изучении влияния генетических и паратипических факторов на развитие качеств организма.
  • Популяционно-статистический метод основывается на применении математического анализа в биологии, что позволяет проанализировать количественные признаки: расчет средних величин, показателей изменчивости, статистических ошибок, корреляцию и другие. Использование закона Харди-Вайнберга помогает в анализе генетической структуры популяции, уровня распространения аномалий, а также проследить изменчивость популяции при применении различных вариантов отбора.

Что такое селекция?

Селекцией называется наука, изучающая методы создания новых сортов и гибридов растений, а также пород животных. селекции является генетика.

Цель науки - усовершенствование качеств организма или получение в нем свойств, необходимых человеку, путем влияния на наследственность. С помощью селекции не могут быть созданы новые виды организмов. Селекцию можно считать одной из форм эволюции, в которой присутствует искусственный отбор. Благодаря ней человечество обеспечено продовольствием.

Основные задачи науки:

  • качественное улучшение особенностей организма;
  • повышение продуктивности и урожайности;
  • повышение устойчивости организмов к заболеваниям, вредителям, изменениям климатических условий.

Особенностью является комплексность науки. Она тесно связана с анатомией, физиологией, морфологией, систематикой, экологией, иммунологией, биохимией, фитопатологией, растениеводством, животноводством и множеством других наук. Значимыми являются знания об оплодотворении, опылении, гистологии, эмбриологии и молекулярной биологии.

Достижения современной селекции позволяют управлять наследственностью и изменчивостью живых организмов. Значение генетики для селекции и медицины отражается в целенаправленном контроле преемственности качеств и возможностях получения гибридов растений и животных для удовлетворения потребностей человека.

Этапы развития селекции

Издавна человек занимался разведением и отбором растений и животных сельскохозяйственного назначения. Но такая работа основывалась на наблюдении и интуиции. Развитие селекции и генетики проходило практически одновременно. Рассмотрим этапы становления селекции:

  1. В период развития растениеводства и животноводства селекция стала носить массовый характер, а становление капитализма привело к селективным работам на уровне промышленности.
  2. В конце 19-го века немецкий ученый Ф. Ахард провел исследование и привил сахарной свекле качество по увеличению урожайности. Английские селекционеры П. Ширеф и Ф. Галлета занимались изучением сортов пшеницы. В России было создано «Полтавское опытное поле», где проходили исследования сортового состава пшеницы.
  3. Селекция как наука начала развиваться с 1903 года, когда была организована селекционная станция при Московском сельскохозяйственном институте.
  4. К середине 20-го века были совершены такие открытия: закон наследственной изменчивости, теория центров происхождения растений культурного назначения, эколого-географические принципы селекции, получены знания об исходном материале растений и их иммунитете. Создан Всесоюзный институт прикладной ботаники и новых культур под руководством Н. И. Вавилова.
  5. Исследования с конца 20-го века и до наших дней носят комплексный характер, селекция тесно взаимодействует с другими науками, особенно с генетикой. Были созданы гибриды с высокой агроэкологической адаптацией. Современные исследования уделяют внимание получению у гибридов высокой продуктивности и противостояния биотическим и абиотическим стрессорам.

Методы селекции

Генетика рассматривает закономерности передачи наследственной информации и способы управления таким процессом. В селекции используются знания, полученные от генетики, и применяются иные методы для оценки организмов.

Основными из них являются:

  • Метод отбора. В селекции применяется естественный и искусственный (бессознательный или методический) отбор. Также отбираться может конкретный организм (индивидуальный отбор) или их группа Определение вида отбора основывается на особенностях размножения животных и растений.
  • Гибридизация позволяет получить новые генотипы. В методе выделяют внутривидовую (скрещивание происходит внутри одного вида) и межвидовую гибридизацию (скрещивание разных видов). Проведение инбридинга позволяет закрепить наследственные свойства при снижении жизнеспособности организма. Если во втором или последующих поколениях проводится аутбридинг, то селекционер получает высокоурожайные и стойкие гибриды. Установлено, что при отдаленном скрещивании потомство бесплодно. Здесь значение генетики для селекции выражается в возможности исследования генов и влияния на плодовитость организмов.
  • Полиплоидия - процесс увеличения хромосомных наборов, который позволяет добиться рождаемости у бесплодных гибридов. Замечено, что некоторые культурные растения после полиплоидии имеют более высокую рождаемость, чем их родственные виды.
  • Индуцированный мутагенез - искусственно вызванный процесс мутаций организма после обработки его мутагеном. После окончания мутации селекционер получает информацию о влиянии фактора на организм и приобретение им новых качеств.
  • Клеточная инженерия предназначена для конструирования клеток нового типа с помощью культивирования, реконструкции и гибридизации.
  • Генная инженерия позволяет выделять и исследовать гены, проводить с ними манипуляции с целью усовершенствования качеств организмов и выведения новых видов.

Растения

В процессе изучения роста, развития и выделения полезных свойств растений генетика и селекция тесно взаимосвязаны. Генетика в сфере анализа жизнедеятельности растений занимается вопросами изучения особенностей их развития и генов, которые обеспечивают нормальное формирование, а также функционирование организма.

Наука изучает такие направления:

  • Развитие одного конкретного организма.
  • Контроль сигнальных систем растения.
  • Экспрессия генов.
  • Механизмы взаимодействия клеток и тканей растения.

Селекция, в свою очередь, обеспечивает создание новых или улучшение качеств уже существующих видов растений на основании знаний, полученных с помощью генетики. Наука изучается и успешно используется не только фермерами и садоводами, но и селекционерами в исследовательских организациях.

Применение достижений генетики в селекции и семеноводстве дает возможность привить растениям новые качества, которые могут быть полезны в разных сферах человеческой жизни, например в медицине или кулинарии. Также знания о генетических особенностях позволяют получить новые сорта культур, которые могут произрастать в иных климатических условиях.

Благодаря генетике в селекции применяется метод скрещивания и индивидуального отбора. Развитие науки о генах позволяет применять в селекции такие методы, как полиплоидия, гетерозис, экспериментальный мутагенез, хромосомная и генная инженерия.

Мир животных

Селекция и генетика животных - разделы наук, которые занимаются изучением особенностей развития представителей животного мира. Благодаря генетике человек получает знания о наследственности, генетических особенностях и изменчивости организма. А селекция позволяет отобрать для использования только тех животных, качества которых необходимы человеку.

Издавна люди проводят отбор животных, которые, например, более подходят для использования в сельском хозяйстве или охоты. Большое значение для селекции имеют хозяйственные признаки и экстерьер. Так, животные хозяйственного назначения оцениваются по внешнему виду и качеству их потомства.

Применение знаний генетики в селекции позволяет контролировать потомство животных и их необходимые качества:

  • устойчивость к вирусам;
  • увеличение удоя;
  • размер особи и телосложение;
  • терпимость к климату;
  • плодовитость;
  • пол приплода;
  • устранение наследственных нарушений у потомков.

Селекция животных получила распространение не только в целях удовлетворения первоочередных потребностей человека в питании. Сегодня можно наблюдать множество домашних пород животных, выведенных искусственно, а также грызунов и рыб, например гуппи. Селекция и генетика в животноводстве используют такие методы: гибридизация, искусственное осеменение, экспериментальный мутагенез.

Селекционеры и генетики часто сталкиваются с проблемой нескрещиваемости видов среди первого поколения гибридов и значительным снижением плодовитости потомков. Современные ученые активно решают такие вопросы. Основной задачей научных работ является изучение закономерностей совместимости гамет, плода и организма матери на генетическом уровне.

Микроорганизмы

Современные знания о селекции и генетике позволяют обеспечить потребности человека в ценных продуктах питания, которые в основном получают от животноводства. Но внимание ученых привлекают и другие объекты природы - микроорганизмы. Наука долгое время считала, что ДНК является индивидуальной особенностью и не может быть передана другому организму. Но исследования показали, что ДНК бактерии могут быть успешно введены в хромосомы растений. Благодаря такому процессу качества, присущие бактерии или вирусу, приживаются в другом организме. Также давно известно влияние генетической информации вирусов на клетки человека.

Изучение генетики и селекция микроорганизмов проводятся в более короткие сроки, по сравнению с растениеводством и животноводством. Это объясняется быстрым размножением и сменой поколений микроорганизмов. Современные методы селекции и генетики - использование мутагенов и гибридизации - позволили создать микроорганизмы с новыми свойствами:

  • мутанты микроорганизмов способны к сверхсинтезу аминокислот и повышенному образованию витаминов и провитаминов;
  • мутанты азотфиксирующих бактерий способны значительно ускорить рост растения;
  • выведены дрожжевые организмы - одноклеточные грибы и многие другие.

Селекционеры и генетики используют такие мутагены:

  • ультрафиолет;
  • ионизирующая радиация;
  • этиленимин;
  • нитрозометилмочевина;
  • применение нитратов;
  • акридиновые краски.

Для эффективности мутации используются частые обработки микроорганизма малыми дозами мутагена.

Медицина и биотехнологии

Общим в значении генетики для селекции и медицины является то, что в обоих случаях наука позволяет изучить наследственность организмов, проявляющийся у них иммунитет. Такие знания важны для борьбы с возбудителями болезней.

Изучение генетики в области медицины позволяет:

  • предотвратить рождение детей с генетическими отклонениями;
  • провести профилактику и лечение наследственных патологий;
  • изучить влияние окружающей среды на наследственность.

Для этого применяются такие методы:

  • генеалогический - изучение семейного древа;
  • близнецовый - сопоставление близнецовой пары;
  • цитогенетический - исследование хромосом;
  • биохимический - позволяет выявить мутантные аллеи в ДНК;
  • дерматоглифический - анализ кожного рисунка;
  • моделирование и другие.

Современные исследования выявили примерно 2 тысячи болезней, передающихся по наследству. В основном это психические расстройства. Изучение генетики и проведение селекции микроорганизмов позволяют снизить уровень заболеваемости среди населения.

Достижения генетики и селекции в биотехнологии позволяют использовать биологические системы (прокариоты, грибы и водоросли) в науке, промышленном производстве, медицине, сельском хозяйстве. Знания о генетике дают новые возможности для развития таких технологий: энерго и ресурсосберегающие, безотходные, наукоемкие, безопасные. В биотехнологии применяются такие методы: клеточная и хромосомная селекция, генная инженерия.

Генетика и селекция - науки, которые неразрывно связаны. Селекционная работа во многом зависит от генетического разнообразия исходного числа организмов. Именно эти науки предоставляют знания для развития сельского хозяйства, медицины, промышленности и других сфер человеческой жизни.

ГЕНЕТИКА - ТЕОРЕТИЧЕСКАЯ ОСНОВА СЕЛЕКЦИИ. СЕЛЕКЦИЯ И ЕЕ МЕТОДЫ.

  • Селекция - наука о выведении новых и совершенствовании уже существующих старых сортов растений, пород животных и штаммов микроорганизмов с необходимыми человеку свойствами.
  • Сорт - популяция растений, искусственно созданная человеком, которая характеризуется определенным генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.
  • Порода - популяция животных, искусственно созданная человеком, которая характеризуется определенным генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.
  • Штамм - популяция микроорганизмов, искусственно созданная человеком, которая характеризуется определенным генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.

2. Каковы основные задачи селекции как науки?

  1. Повышение продуктивности сортов растений, пород животных и штаммов микроорганизмов;
  2. Изучение разнообразия сортов растений, пород животных и штаммов микроорганизмов;
  3. Анализ закономерностей наследственной изменчивости при гибридизации и мутационном процессе;
  4. Исследование роли среды в развитии признаков и свойств организмов;
  5. Разработка систем искусственного отбора, способствующих усилению и закреплению полезных для человека признаков у организмов с разными типами размножения;
  6. Создание устойчивых к заболеваниям и климатическим условиям сортов и пород;
  7. Получение сортов, пород и штаммов, пригодных для механизированного промышленного выращивания и разведения.

3. Что является теоретической базой селекции?

Ответ : Теоретической базой селекции является генетика. Она также использует достижения теории эволюции, молекулярной биологии, биохимии и других биологических наук.

4. Заполните таблицу " Методы селекции".

5. Какое значение имеет селекция в хозяйственной деятельности человека?

Ответ : Селекция позволяет повышать продуктивность сортов растений, пород животных и штаммов микроорганизмов; разрабатывать системы искусственного отбора, способствующие усилению и закреплению полезных для человека признаков у различных организмов; создавать устойчивые к заболеваниям и климатическим условиям сорта и породы; получать сорта, породы и штаммы, пригодные для механизированного промышленного выращивания и разведения.

УЧЕНИЕ Н.И. ВАВИЛОВА О ЦЕНТРАХ МНОГООБРАЗИЯ И ПРОИСХОЖДЕНИЯ КУЛЬТУРНЫХ РАСТЕНИЙ.

1. Дайте определения понятий.

  • Центр многообразия и происхождения - территория (географическая область), в пределах которой формировался вид или другая систематическая категория сельскохозяйственных культур и откуда они распространились.
  • Гомологический ряд - сходный ряд наследственной изменчивости у генетически близких видов и родов.

2. Сформулируйте закон гомологических рядов наследственной изменчивости.

Ответ : Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуется определенным циклом изменчивости, проходящий через все роды и виды, составляющие семейство.

3. Заполните таблицу " Центры происхождения и многообразия культурных растений".

БИОТЕХНОЛОГИЯ, ЕЕ ДОСТИЖЕНИЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ.

1. Дайте определения понятий.

  • Биотехнология - дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.
  • Клеточная инженерия - это создание клеток нового типа на основе их гибридизации, реконструкции и культивирования. В узком смысле слова под этим термином понимают гибридизацию протопластов или животных клеток, в широком - различные манипуляции с ними, направленные на решение научных и практических задач.
  • Генная инженерия - совокупность приемов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма, осуществления манипуляций с генами и введения их в другие организмы.

2. Какова роль биотехнологии в практической деятельности человека?

Ответ : Процессы биотехнологии используются в хлебопечении, виноделии, пивоварении, приготовлении кисломолочных продуктов; микробиологические процессы - для получения ацетона, бутанола, антибиотиков, витаминов, кормового белка; биотехнология также включает в себя использование живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, возможность создания живых организмов с необходимыми свойствами.

3. Каковы перспективы развития биотехнологии?

Дальнейшее развитие биотехнологии поможет решить ряд важнейших задач :

  1. Решить проблему нехватки продовольствия.
  2. Повысить урожайность культурных растений, создавать более устойчивые к неблагоприятным воздействиям сорта, а также находить новые способы защиты растений.
  3. Создавать новые биологические удобрения, биогумус.
  4. Находить альтернативные источники животного белка.
  5. Размножать растения вегетативно при помощи метода культуры тканей.
  6. Создавать новые лекарства и БАДы.
  7. Проводить раннюю диагностику инфекционных заболеваний и злокачественных новообразований.
  8. Получать экологически чистые виды топлива путем переработки отходов промышленного и сельскохозяйственного производства.
  9. Перерабатывать полезные ископаемые новыми способами.
  10. Использовать методы биотехнологии в большинстве отраслей деятельности во благо человечества.

4. В чем вы видите возможные негативные последствия неконтролируемых исследований в области биотехнологии?

Ответ : Трансгенные продукты могут принести вред здоровью, вызывать злокачественные опухоли клонирование человека негуманно и противоречит мировоззрениям многих наций. Новейшие разработки биотехнологии могут привести к неконтролируемым последствиям: созданию новых вирусов и микроорганизмов, чрезвычайно опасных для человека, а также к контролируемым: созданию биологического оружия.

Генетика является теоретической основой селекции. Все современные методы селекции опираются на использование генетических принципов. Положения генетики о дискретной природе наследственности, учение о мутационной и модификационной изменчивости, установление закономерностей расщепления признаков, понятия доминантности и рецессивности, гомо - и гетерозиготности и другие составляют основу селекционной работы в настоящее время.

Уже в первый период своего развития генетика внесла важный вклад в теорию селекции. Выдающееся значение для разработки генетических методов селекции растений имели работы Н. И. Вавилова и И. В. Мичурина.

Н. И. Вавилов открыл закон гомологических рядов в наследственной изменчивости, создал учение о мировых центрах происхождения культурных растений и заложил генетико-селекционные основы учения об иммунитете растений к болезням и вредителям.

И. В. Мичурин первым среди биологов выдвинул положение о возможности управления процессом создания форм и сортов с нужными человеку признаками и свойствами. Обосновав теоретически это положение, он вывел большое количество сортов плодово-ягодных растений. И. В. Мичурин разработал теорию отдаленной гибридизации и учение об управлении доминированием для формирования признаков и свойств многолетних растений в процессе онтогенеза.

Первоначально в основе селекции лежал искусственный отбор, когда человек отбирает растения или животных с интересующими его признаками. До XVI-XVII веков отбор происходил бессознательно: то есть человек, например, отбирал для посева лучшие, самые крупные семена пшеницы, не задумываясь о том, что он изменяет растения в нужном ему направлении.

Только в последнее столетие человек, еще не зная законов генетики, стал использовать отбор сознательно или целенаправленно, скрещивая те растения, которые удовлетворяли его в наибольшей степени.

Однако методом отбора человек не может получить принципиально новых свойств у разводимых организмов, так как при отборе можно выделить только те генотипы, которые уже существуют в популяции. Поэтому для получения новых пород и сортов животных и растений применяют гибридизацию, скрещивая растения с желательными признаками и в дальнейшем отбирая из потомства те особи, у которых полезные свойства выражены наиболее сильно. Например, один сорт пшеницы отличается прочным стволом и устойчив к полеганию, а сорт с тонкой соломиной не заражается стеблевой ржавчиной. При скрещивании растений из двух сортов в потомстве возникают различные комбинации признаков. Но отбирают именно те растения, которые одновременно имеют прочную соломину и не болеют стеблевой ржавчиной. Так создается новый сорт.

Основные методы селекции вообще и селекции растений в частности - отбор и гибридизация. Для перекрестноопыляемых растений применяют массовый отбор особей с желаемыми свойствами. В противном случае невозможно получить материал для дальнейшего скрещивания. Таким образом получают, например, новые сорта ржи. Эти сорта не являются генетически однородными. Если же желательно получение чистой линии - то есть генетически однородного сорта, то применяют индивидуальный отбор, при котором путем самоопыления получают потомство от одной единственной особи с желательными признаками. Таким методом были получены многие сорта пшеницы, капусты, и т. п.

Для закрепления полезных наследственных свойств необходимо повысить гомозиготность нового сорта. Иногда для этого применяют самоопыление перекрестноопыляемых растений. При этом могут фенотипически проявиться неблагоприятные воздействия рецессивных генов. Основная причина этого - переход многих генов в гомозиготное состояние. У любого организма в генотипе постепенно накапливаются неблагоприятные мутантные гены. Они чаще всего рецессивны, и фенотипически не проявляются. Но при самоопылении они переходят в гомозиготное состояние, и возникает неблагоприятное наследственное изменение. В природе у самоопыляемых растений рецессивные мутантные гены быстро переходят в гомозиготное состояние, и такие растения погибают, выбраковываясь естественным отбором.

Несмотря на неблагоприятные последствия самоопыления, его часто применяют у перекрестноопыляемых растений для получения гомозиготных («чистых») линий с нужными признаками. Это приводит к снижению урожайности. Однако затем проводят перекрестное опыление между разными самоопыляющимися линиями и в результате в ряде случаев получают высокоурожайные гибриды, обладающие нужными селекционеру свойствами. Это метод межлинейной гибридизации, при котором часто наблюдается эффект гетерозиса: гибриды первого поколения обладают высокой урожайностью и устойчивостью к неблагоприятным воздействиям. Гетерозис характерен для гибридов первого поколения, которые получаются при скрещивании не только разных линий, но и разных сортов и даже видов. Эффект гетерозиготной (или гибридной) мощности бывает сильным только в первом гибридном поколении, а в следующих поколениях постепенно снижается. Основная причина гетерозиса заключается в устранении в гибридах вредного проявления накопившихся рецессивных генов. Другая причина - объединение в гибридах доминантных генов родительских особей и взаимное усиление их эффектов.

В селекции растений широко применяется экспериментальная полиплоидия, так как полиплоиды отличаются быстрым ростом, крупными размерами и высокой урожайностью. В сельскохозяйственной практике широко используются триплоидная сахарная свекла, четырехплоидный клевер, рожь и твердая пшеница, а также шестиплоидная мягкая пшеница. Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления, в результате чего удвоившиеся хромосомы не могут разойтись, оставаясь в одном ядре. Одно из таких веществ - колхицин. Применение колхицина для получения искусственных полиплоидов является одним из примеров искусственногомутагенеза, применяемого при селекции растений.

Путем искусственного мутагенеза и последующего отбора мутантов были получены новые высокоурожайные сорта ячменя и пшеницы. Этими же методами удалось получить новые штаммы грибов, выделяющие в 20 раз больше антибиотиков, чем исходные формы. Сейчас в мире культивируют более 250 сортов сельскохозяйственных растений, созданных при помощи физического и химического мутагенеза. Это сорта кукурузы, ячменя, сои, риса, томатов, подсолнечника, хлопчатника, декоративных растений.

При создании новых сортов при помощи искусственного мутагенеза исследователи используют закон гомологических рядов Н. И. Вавилова. Организм, получивший в результате мутации новые свойства, называют мутантом. Большинство мутантов имеет сниженную жизнеспособность и отсеивается в процессе естественного отбора. Для эволюции или селекции новых пород и сортов необходимы те редкие особи, которые имеют благоприятные или нейтральные мутации.

К одному из достижений современной генетики и селекции относится преодоление бесплодия межвидовых гибридов. Впервые это удалось сделать Г. Д. Карпеченко при получении капустно-редечного гибрида. В результате отдаленной гибридизации было получено новое культурное растение - тритикале - гибрид пшеницы с рожью. Отдаленная гибридизация широко применяется в плодоводстве.

Основные принципы селекции животных не отличаются от принципов селекции растений. Однако селекция животных имеет некоторые особенности: для них характерно только половое размножение; в основном очень редкая смена поколений (у большинства животных через несколько лет); количество особей в потомстве невелико. Поэтому в селекционной работе с животными важное значение приобретает анализ совокупности внешних признаков, или экстерьера, характерного для той или иной породы.

Одним из важнейших достижений человека на заре его становления и развития (10-12 тыс. лет назад) было создание постоянного и достаточно надежного источника продуктов питания путем одомашнивания диких животных. Главным фактором одомашнивания служит искусственный отбор организмов, отвечающих требованиям человека. У домашних животных весьма развиты отдельные признаки, часто бесполезные или даже вредные для их существования в естественных условиях, но полезные для человека. Например, способность некоторых пород кур давать более 300 яиц в год лишена биологического смысла, поскольку такое количество яиц курица не сможет высиживать. Поэтому в естественных условиях одомашненные формы существовать не могут.

Одомашнивание привело к ослаблению действия стабилизирующего отбора, что резко повысило уровень изменчивости и расширило его спектр. При этом одомашнивание сопровождалось отбором, вначале бессознательным (отбор тех особей, которые лучше выглядели, имели более спокойный нрав, обладали другими ценными для человека качествами), затем осознанным, или методическим. Широкое использование методического отбора направлено на формирование у животных определенных качеств, удовлетворяющих человека.

Процесс одомашнивания новых животных для удовлетворения потребностей человека продолжается и в наше время. Например, для получения модной и высококачественной пушнины создана новая отрасль животноводства - пушное звероводство.

Отбор родительских форм и типы скрещивания животных проводятся с учетом цели, поставленной селекционером. Это может быть целенаправленное получение определенного экстерьера, повышение молочности, жирности молока, качества мяса и т. д. Разводимые животные оцениваются не только по внешним признакам, но и по происхождению и качеству потомства. Поэтому необходимо хорошо знать их родословную. В племенных хозяйствах при подборе производителей всегда ведется учет родословных, в которых оцениваются экстерьерные особенности и продуктивность родительских форм в течение ряда поколений. По признакам предков, особенно по материнской линии, можно судить с известной вероятностью о генотипе производителей.

В селекционной работе с животными применяют в основном два способа скрещивания: аутбридинг и инбридинг.

Аутбридинг, или неродственное скрещивание между особями одной породы или разных пород животных, при дальнейшем строгом отборе приводит к поддержанию полезных качеств и к усилению их в ряду следующих поколений.

При инбридинге в качестве исходных форм используются братья и сестры или родители и потомство (отец-дочь, мать-сын, двоюродные братья-сестры и т. д.). Такое скрещивание в определенной степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности и, как следствие, к закреплению хозяйственно ценных признаков у потомков. При этом гомозиготизация по генам, контролирующим изучаемый признак, происходит тем быстрее, чем более близкородственное скрещивание используют при инбридинге. Однако гомозиготизация при инбридинге, как и в случае растений, ведет к ослаблению животных, снижает их устойчивость к воздействию среды, повышает заболеваемость. Во избежание этого необходимо проводить строгий отбор особей, обладающих ценными хозяйственными признаками.

В селекции инбридинг обычно является лишь одним из этапов улучшения породы. За ним следует скрещивание разных межлинейных гибридов, в результате которого нежелательные рецессивные аллели переводятся в гетерозиготное состояние и вредные последствия близкородственного скрещивания заметно снижаются.

У домашних животных, как и у растений, наблюдается явление гетерозиса: при межпородных или межвидовых скрещиваниях у гибридов первого поколения происходит особенно мощное развитие и повышение жизнеспособности. Классическим примером проявления гетерозиса является мул - гибрид кобылы и осла. Это сильное, выносливое животное, которое может использоваться в значительно более трудных условиях, чем родительские формы.

Гетерозис широко применяют в промышленном птицеводстве (пример - бройлерные цыплята) и свиноводстве, так как первое поколение гибридов непосредственно используют в хозяйственных целях.

Отдаленная гибридизация. Отдаленная гибридизация домашних животных менее эффективна, чем растений. Межвидовые гибриды животных часто бывают бесплодными. При этом восстановление плодовитости у животных представляет более сложную задачу, поскольку получение полиплоидов на основе умножения числа хромосом у них невозможно. Правда, в некоторых случаях отдаленная гибридизация сопровождается нормальным слиянием гамет, обычным мейозом и дальнейшим развитием зародыша, что позволило получить некоторые породы, сочетающие ценные признаки обоих использованных в гибридизации видов. Например, в Казахстане на основе гибридизации тонкорунных овец с диким горным бараном архаром создана новая порода тонкорунных архаромериносов, которые, как и архары, пасутся на высокогорных пастбищах, недоступных для тонкорунных мериносов. Улучшены породы местного крупного рогатого скота.

Задачи современной селекции

Создание новых и совершенствование старых сортов, пород и штаммов с хозяйственно-полезными признаками.

Создание технологичных высокопродуктивных биологических систем, максимально использующих сырьевые и энергетические ресурсы планеты.

Повышение продуктивности пород, сортов и штаммов с единицы площади за единицу времени.

Повышение потребительских качеств продукции.

Уменьшение доли побочных продуктов и их комплексная переработка.

Уменьшение доли потерь от вредителей и болезней.

Учение Н.И. Вавилова о центрах происхождения культурных растений

Учение об исходном материале является основой современной селекции. Исходный материал служит источником наследственной изменчивости – основы для искусственного отбора. Н.И. Вавилов установил, что на Земле существуют районы с особенно высоким уровнем генетического разнообразия культурных растений, и выделил основные центры происхождения культурных растений (первоначально Н.И. Вавилов выделил 8 центров, но затем сократил их число до 7). Для каждого центра установлены характерные для него важнейшие сельскохозяйственные культуры.

1. Тропический центр – включает территории тропической Индии, Индокитая, Южного Китая и островов Юго-Восточной Азии. Не менее одной четверти населе­ния земного шара до сих пор живет в тропичес­кой Азии. В прошлом относительная населен­ность этой территории была еще более значи­тельной. Из этого центра ведет начало около одной трети возделываемых в настоящее время растений. Это родина таких растений, как рис, сахарный тростник, чай, лимон, апельсин, банан, баклажан, а также большого количества тропических плодовых и овощных культур.

2. Восточноазиатский центр – включает умеренные и субтропические части Центрального и Восточного Китая, Корею, Япо­нию и большую часть о. Тайвань. На этой терри­тории живет примерно также около одной четверти населения Земли. Около 20% всей мировой культурной флоры ведет начало из Восточной Азии. Это родина таких растений, как соя, просо, хурма, многих других овощных и плодовых культур.

3. Юго-западноазиатский центр – включает территории внутренней нагорной Малой Азии (Анатолии), Ирана, Афганистана, Средней Азии и Северо-Западной Индии. Сюда же примыкает Кавказ, культурная флора кото­рого, как показали исследования, генетически связана с Передней Азией. Родина мягкихпшениц, ржи, овса, ячменя, гороха, дыни.

Этот центр может быть подразделен на следующие очаги:

а) Кавказский со множеством оригинальных видов пшеницы, ржи и плодовых. По пшенице и ржи, как выяснено сравнительными исследова­ниями, это наиболее важный мировой очаг их видового происхождения;

б) Переднеазиатский, включающий Малую Азию, Внутреннюю Сирию и Палестину, Транс­иорданию, Иран, Северный Афганистан и Среднюю Азию вместе с Китайским Туркеста­ном;

в) Северо-западноиндийский, включающий помимо Пенджаба и примыкающих провинций Северной Индии и Кашмира также Белуджистан и Южный Афганистан.

Около 15% всей мировой культурной флоры ведет начало с этой территории. В исключительном видовом разно­образии здесь сосредоточены дикие родичи пше­ницы, ржи и различных европейских плодовых. До сих пор здесь можно проследить для многих видов непрерывный ряд от культурных до диких форм, т. е. установить сохранившиеся связи диких форм с культурными.

4. Средиземноморский центр – включает страны, расположенные по берегам Средиземного моря. Этот замечательный гео­графический центр, характеризующийся в прош­лом величайшими древнейшими цивилизациями, дал начало приблизительно около 10% видов куль­турных растений. Среди них такие, как твердые пшеницы, капуста, свекла, морковь, лен, виноград, маслина, множество других овощных и кормовых культур.

5. Абиссинский центр. Общее число видов культурных растений, связанных по своему происхождению с Абисси­нией, не превышает 4% мировой культурной флоры. Абиссиния харак­теризуется рядом эндемичных видов и даже родов культурных растений. Среди них такие, как кофейное дерево, арбуз, хлебный злак тэфф(Eragrostis abyssinica), своеобразное масличное растение нуг (Guizolia ahyssinica), особый вид банана.

В пределах Нового Света установлена порази­тельно строгая локализация двух центров видо­образования главнейших культурных растений.

6. Центральноамериканский центр, охватывающий обширную территорию Северной Америки, включая Южную Мексику. В этом центре можно выделить три очага:

а) Горный южномексиканский,

б) Центральноамериканский,

в) Вест-Индский островной.

Из Центральноамериканского центра ведет начало около 8% различных возделываемых рас­тений, таких, как кукуруза, подсолнечник, американские длинноволокнистые хлопчатники, какао (шоколадное дерево), ряд видов фасоли, тыквенных, многих плодовых (гвайява, аноны и авокадо).

7. Андийский центр, в пределах Южной Америки, приуроченный к Андийскому хребту. Это родина картофеля, томата. Отсюда ведут начало хинное дерево и кокаиновый куст.

Закон гомологических рядов

Систематизируя учение об исходном материале, Н.И. Вавилов сформулировал закон гомологических рядов (1920 г.):

1. Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости.

2. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство.

Селекция – это наука о методах создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов.

Современная селекция – это обширная область человеческой деятельности, которая представляет собой сплав различных отраслей науки, производства сельскохо-ной продукции и ее комплексной переработки.

Задачи современной селекции

Создание новых и совершенствование старых сортов, пород и штаммов с хозяйственно-полезными признаками.

Создание технологичных высокопродуктивных биологических систем, максимально использующих сырьевые и энергетические ресурсы планеты.

Повышение продуктивности пород, сортов и штаммов с единицы площади за единицу времени.

Повышение потребительских качеств продукции.

Уменьшение доли побочных продуктов и их комплексная переработка.

Уменьшение доли потерь от вредителей и болезней.

Теоретической основой селекции является генетика, так как именно знание законов генетики позволяет целенаправленно управлять появлением мутаций, предсказывать результаты скрещивания, правильно проводить отбор гибридов. В результате применения знаний по генетике удалось создать более 10000 сортов пшеницы на основе нескольких исходных диких сортов, получить новые штаммы микроорганизмов, выделяющих пищевые белки, лекарственные вещества, витамины и т. п.

Методы селекции основными специфическими методами селекции остаются гибридизация и искусственный отбор .Гибридизация

Скрещивание организмов с разным генотипом является основным методом получения новых сочетаний признаков.

Различают следующие типы скрещиваний:

Внутривидовые скрещивания – скрещиваются разные формы в пределах вида (не обязательно сорта и породы). К внутривидовым скрещиваниям относятся и скрещивания организмов одного вида, обитающих в разных экологических условиях.

Близкородственные скрещивания – инцухт у растений и инбридинг у животных. Применяются для получения чистых линий.

Межлинейные скрещивания – скрещиваются представители чистых линий (а в ряде случаев – разных сортов и пород). Возвратные скрещивания (бэк-кроссы ) – это скрещивания гибридов (гетерозигот) с родительскими формами (гомозиготами). Например, скрещивания гетерозигот с доминантными гомозиготными формами используются для того, чтобы не допустить фенотипического проявления рецессивных аллелей.

Анализирующие скрещивания – это скрещивания доминантных форм с неизвестным генотипом и рецессивно-гомозиготных тестерных линий.

Отдаленные скрещивания – межвидовые и межродовые. Обычно отдаленные гибриды бесплодны и их размножают вегетативным путем

Отбором называется процесс дифференциального (неодинакового) воспроизведения генотипов. При этом не следует забывать, что фактически отбор ведется по фенотипам на всех стадиях онтогенеза организмов (особей). Неоднозначные взаимоотношения между генотипом и фенотипом предполагают проверки отобранных растений по потомству.

Массовый отбор – отбору подвергается вся группа. Например, семена с лучших растений объединяются и высеваются совместно. Массовый отбор считается примитивной формой отбора, поскольку не позволяет устранить влияние модификационной изменчивости (в том числе, и длительных модификаций). Применяется в семеноводстве. Достоинством этой формы отбора является сохранение высокого уровня генетического разнообразия в селектируемой группе растений.

Индивидуальный отбор – отбираются отдельные особи, и собранные с них семена высеваются раздельно. Индивидуальный отбор считается прогрессивной формой отбора, поскольку позволяет исключить влияние модификационной изменчивости.

Разновидностью семейного отбора является сиб-селекция . В основе сиб-селекции лежит отбор по ближайшим родственникам (сибсам – братьям и сестрам). Частным случаем сиб-селекции является отбор подсолнечника на масличность методом половинок . При использовании этого метода соцветие (корзинку) подсолнечника делят пополам. Семена одной половины проверяют на масличность: если масличность высокая, то вторая половина семян используется в дальнейшей селекции.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вариант 10.

ВОПРОС № 1

Генетика - теоретическая основа селекции. Селекция. Учение Н.И. Вавилова о центрах многообразия и происхождения культурных растений. Основные методы селекции: гибридизация, искусственный отбор

Селекция (от Латинского selectio, seligere - отбор) - это наука о методах создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов.

Первоначально в основе селекции лежал искусственный отбор, когда человек отбирает растения или животных с интересующими его признаками. До XVI-XVII вв. отбор происходил бессознательно, то есть человек, например, отбирал для посева лучшие, самые крупные семена пшеницы, не задумываясь о том, что он изменяет растения в нужном ему направлении.

Только в последнее столетие человек, еще не зная законов генетики, стал использовать отбор сознательно или целенаправленно, скрещивая те растения, которые удовлетворяли его в наибольшей степени.

Однако методом отбора человек не может получить принципиально новых свойств у разводимых организмов, так как при отборе можно выделить только те генотипы, которые уже существуют в популяции. Поэтому для получения новых пород и сортов животных и растений применяют гибридизацию (скрещивание), скрещивая растения с желательными признаками и, в дальнейшем, отбирая из потомства те особи, у которых полезные свойства выражены наиболее сильно.

Современная селекция - это обширная область человеческой деятельности, которая представляет собой сплав различных отраслей науки, производства сельскохозяйственной продукции и ее комплексной переработки. В ходе селекции происходят устойчивые наследственные преобразования различных групп организмов. По образному выражению Н.И. Вавилова, «…селекция представляет собой эволюцию, направляемую волей человека». Известно, что достижения селекции широко использовал Ч. Дарвин при обосновании основных положений эволюционной теории. Современная селекция базируется на достижениях генетики и является основой эффективного высокопродуктивного сельского хозяйства и биотехнологии.

Задачи современной селекции

Создание новых и совершенствование старых сортов, пород и штаммов с хозяйственно-полезными признаками.

Создание технологичных высокопродуктивных биологических систем, максимально использующих сырьевые и энергетические ресурсы планеты.

Повышение продуктивности пород, сортов и штаммов с единицы площади за единицу времени.

Повышение потребительского качества продукции.

Уменьшение доли побочных продуктов и их комплексная переработка.

Уменьшение доли потерь от вредителей и болезней.

Наибольший вклад в изучение разнообразия культурных растений внёс русский селекционер Н.И. Вавилов.

« Мне не жалко отдать жизнь ради самого малого в науке…»

Н.И. Вавилов родился 26 ноября 1887 г. в Москве. Ко времени окончания коммерческого училища он уже твердо знал, что будет биологом. В 1906 г. Николай Иванович поступил в Московский сельскохозяйственный институт. Уже в студенческие годы начали проявляться его замечательные качества.

В 1913 г. Н.И. Вавилов был командирован за границу для научной работы. В Мертоне (Англия), в генетической лаборатории Садоводственного института. Там он продолжил исследование иммунитета хлебных злаков.

Несколько месяцев Николай Иванович работал в лаборатории генетики Кембриджского университета; во Франции он посетил крупнейшую семеноводческую фирму Вильморена, где ознакомился с новейшими достижениями селекции в семеноводстве, в поражаемости различных сортов растений. Результаты этих исследований с широким использованием эксперимента были обобщены в монографии "Иммунитет растений к инфекционным заболеваниям" (1919 г.). В 1917 г. Н. И. Вавилов получил приглашение возглавить кафедру генетики, селекции и частного земледелия на Саратовских высших сельскохозяйственных курсах и переехал в Саратов. Вместе с тем он продолжал широкое полевое изучение сортов различных сельскохозяйственных растений, в первую очередь хлебных злаков.

Он принял активное участие в организации в 1923 г. первой Всесоюзной сельскохозяйственной выставки в Москве. Авторитет Вавилова как ученого и организатора науки рос. В 1924 г. Отдел прикладной ботаники и селекции был преобразован во Всесоюзный институт прикладной ботаники и новых культур при Совнаркоме (с 1930 г. - Всесоюзный институт растениеводства ВИР), и Н. И. Вавилов был утвержден его директором. К концу 20-х годов Всесоюзный институт прикладной ботаники и новых культур превратился в один из крупнейших и известнейших в мире научных центров по изучению культурных растений. Вавилов отдал всю свою энергию для поднятия сельского хозяйства на новый уровень. Умирая в ГУЛАГЕ от голода, он думал о своей Родине, обо всем человечестве. Стремясь доказать необходимость науки - генетики, способной создавать новые сорта растений, которые спасут человечество от голода и удовлетворят растущие потребности в продуктах питания. Яркая и прекрасная жизнь Николая Ивановича долго будет привлекать внимание исследователей. Наша молодёжь должна знать эту большую жизнь, которую можно назвать подвигом учёного, должна учиться на ней, как нужно самоотверженно работать и как любить свою родину и науку.

Учение Н.И. Вавилова о происхождении культурных растений

Учение об исходном материале является основой современной селекции. Исходный материал служит источником наследственной изменчивости - основы для искусственного отбора. Н.И. Вавилов установил, что на Земле существуют районы с особенно высоким уровнем генетического разнообразия культурных растений, и выделил основные центры происхождения культурных растений.

Центры происхождения культурных растений

Для каждого центра установлены характерные для него важнейшие сельскохозяйственные культуры.

1. Тропический центр - включает территории тропической Индии, Индокитая, Южного Китая и островов Юго-Восточной Азии. Не менее одной четверти населения земного шара до сих пор живет в тропической Азии. В прошлом относительная населенность этой территории была еще более значительной. Из этого центра ведет начало около одной трети возделываемых в настоящее время растений. Это родина таких растений, как рис, сахарный тростник, чай, лимон, апельсин, банан, баклажан, а также большого количества тропических плодовых и овощных культур.

2. Восточноазиатский центр - включает умеренные и субтропические части Центрального и Восточного Китая, Корею, Японию и большую часть о. Тайвань. На этой территории живет примерно также около одной четверти населения Земли. Около 20% всей мировой культурной флоры ведет начало из Восточной Азии. Это родина таких растений, как соя, просо, хурма, многих других овощных и плодовых культур.

3. Юго-западноазиатский центр - включает территории внутренней нагорной Малой Азии (Анатолии), Ирана, Афганистана, Средней Азии и Северо-Западной Индии. Сюда же примыкает Кавказ, культурная флора которого, как показали исследования, генетически связана с Передней Азией. Родина мягких пшениц, ржи, овса, ячменя, гороха, дыни.

Этот центр может быть подразделен на следующие очаги:

а) Кавказский со множеством оригинальных видов пшеницы, ржи и плодовых. По пшенице и ржи, как выяснено сравнительными исследованиями, это наиболее важный мировой очаг их видового происхождения;

б) Переднеазиатский, включающий Малую Азию, Внутреннюю Сирию и Палестину, Трансиорданию, Иран, Северный Афганистан и Среднюю Азию вместе с Китайским Туркестаном;

в) Северо-западноиндийский, включающий помимо Пенджаба и примыкающих провинций Северной Индии и Кашмира также Белуджистан и Южный Афганистан.

4. Средиземноморский центр - включает страны, расположенные по берегам Средиземного моря. Этот замечательный географический центр, характеризующийся в прошлом величайшими древнейшими цивилизациями, дал начало приблизительно около 10% видов культурных растений. Среди них такие, как твердые пшеницы, капуста, свекла, морковь, лен, виноград, маслина, множество других овощных и кормовых культур.

5. Абиссинский центр. Общее число видов культурных растений, связанных по своему происхождению с Абиссинией, не превышает 4% мировой культурной флоры. Абиссиния характеризуется рядом эндемичных видов и даже родов культурных растений. Среди них такие, как кофейное дерево, арбуз, хлебный злак.В пределах Нового Света установлена поразительно строгая локализация двух центров видообразования главнейших культурных растений.

6. Центральноамериканский центр, охватывающий обширную территорию Северной Америки, включая Южную Мексику. В этом центре можно выделить три очага:

а) Горный южномексиканский,

б) Центральноамериканский,

в) Вест-Индский островной.

Из Центральноамериканского центра ведет начало около 8% различных возделываемых растений, таких, как кукуруза, подсолнечник, американские длинноволокнистые хлопчатники, какао (шоколадное дерево), ряд видов фасоли, тыквенных, многих плодовых (гвайява, аноны и авокадо).

7. Андийский центр, в пределах Южной Америки, приуроченный к Андийскому хребту. Это родина картофеля, томата. Отсюда ведут начало хинное дерево и кокаиновый куст. Как видно из перечня географических центров, начальное введение в культуру подавляющего числа возделываемых растений связано не только с флористическими областями, отличающимися богатой флорой, но и с древнейшими цивилизациями. Лишь сравнительно немногие растения введены в прошлом в культуру из дикой флоры вне перечисленных основных географических центров. Семь указанных географических центров соответствуют древнейшим земледельческим культурам.

Южноазиатский тропический центр связан с высокой древнеиндийской и индокитайской культурой. Новейшие раскопки показали глубокую древность этой культуры, синхронной среднее-азиатской. Восточноазиатский центр связан с древней китайской культурой, а Юго-западно-азиатский - с древней культурой Ирана, Малой Азии, Сирии, Палестины и Ассиро-Вавилонии. Средиземноморье за много тысячелетий до нашей эры сосредоточило этрусскую, эллинскую и египетскую культуры. Своеобразная абиссинская культура имеет глубокие корни, вероятно совпадающие по времени с древней египетской культурой. В пределах Нового Света Центрально - Американский центр связан с великой культурой майя, достигшей до Колумба огромных успехов в науке и искусстве. Андийский центр в Южной Америке сочетается в развитии с замечательной до инкской и инкской цивилизациями.

Коллекционные образцы, собранные под руководством Н.И. Вавилова, хранились в Ленинграде во Всесоюзном институте растениеводства (ВИРе), созданном Н.И. Вавиловым в 1930 г. На основе Всесоюзного института прикладной ботаники и новых культур (ранее - Отдела прикладной ботаники и селекции, еще ранее - Бюро по прикладной ботанике).

В годы Великой Отечественной войны во время блокады Ленинграда сотрудники ВИРа несли круглосуточное дежурство при коллекции семян зерновых культур. Многие сотрудники ВИРа умерли голодной смертью, но бесценное видовое и сортовое богатство, из которого и поныне селекционеры всего мира черпают материал для создания новых сортов и гибридов, было сохранено.

Во второй половине XX столетия были организованы новые экспедиции по сбору образцов для пополнения коллекции ВИРа; в настоящее время эта коллекция насчитывает до 300 тысяч образцов растений, принадлежащим к 1740 видам.

Закон гомологических рядов наследственной изменчивости

«Генетически близкие роды и виды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других родственных видов и родов».

Н.И. Вавилов установил, что «важным моментом при оценке материала для селекции является наличие в нем разнообразия наследственных форм».

Разнообразие генов и генотипов в исходном материале Н.И. Вавилов назвал генетическим потенциалом исходного материала.

Систематизируя учение об исходном материале, Н.И. Вавилов сформулировал закон гомологических рядов (1920 г.):

1. Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.

2. Целые семейства растений, в общем, характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство.

Согласно этому закону, у генетически близких видов и родов существуют близкие гены, которые дают сходные серии множественных аллелей и вариантов признака. Например, в пределах разных родов злаков существует параллельная изменчивость окраски зерна:

Теоретическое и практическое значение закона гомологических рядов:

Н.И. Вавилов четко разграничил внутривидовую и межвидовую изменчивость. При этом вид рассматривался как целостная, исторически сложившаяся система.

Н.И. Вавилов показал, что внутривидовая изменчивость небезгранична и подчиняется определенным закономерностям.

Закон гомологических рядов является руководством для селекционеров, позволяя предсказать возможные варианты признаков.

Н. И. Вавилов впервые осуществил целенаправленный поиск редких или мутантных аллелей в природных популяциях и популяциях культурных растений. В наше время продолжается поиск мутантных аллелей для повышения продуктивности штаммов, сортов и пород.

Этот закон может способствовать более рациональному использованию органических богатств Земли. Закон гомологичных рядов признан одним из основных законов живой природы. Он облегчает поиск нужных для селекции хозяйственных признаков растений и животных.

Методы селекции

Современная селекция использует целый комплекс методов, основанных на последних достижениях множества наук: генетики, цитологии, ботаники, зоологии, микробиологии, агроэкологии, биотехнологии, информационных технологий и т.д. Однако основными специфическими методами селекции остаются гибридизация и искусственный отбор.

Гибридизация

Скрещивание организмов с разным генотипом является основным методом получения новых сочетаний признаков. Иногда гибридизация является необходимой, например, для предотвращения инбредной депрессии. Инбредная депрессия проявляется при близкородственном скрещивании и выражается в снижении продуктивности и жизненности. Инбредная депрессия - это явление, противоположное гетерозису.

Различают следующие типы скрещиваний:

Внутривидовые скрещивания - скрещиваются разные формы в пределах вида. К внутривидовым скрещиваниям относятся и скрещивания организмов одного вида, обитающих в разных экологических условиях и/или в разных географических районов (эколого-географические скрещивания). Внутривидовые скрещивания лежат в основе большинства других скрещиваний.

Близкородственные скрещивания - инцухт у растений и инбридинг у животных. Применяются для получения чистых линий.

Межлинейные скрещивания - скрещиваются представители чистых линий (а в ряде случаев - разных сортов и пород). Межлинейные скрещивания используются для подавления инбредной депрессии, а также для получения эффекта гетерозиса.

Скрещивания (бэк-кроссы) - это скрещивания гибридов (гетерозигот) с родительскими формами (гомозиготами). Например, скрещивания гетерозигот с доминантными гомозиготными формами используются для того, чтобы не допустить фенотипического проявления рецессивных аллелей.

Анализирующие скрещивания (являются разновидностью бэк-кроссов) - это скрещивания доминантных форм с неизвестным генотипом и рецессивно-гомозиготных тестерных линий. Такие скрещивания используются для анализа производителей по потомству.

Насыщающие (заместительные) скрещивания также являются разновидностью возвратных скрещиваний. При многократных возвратных скрещиваниях возможно избирательное (дифференциальное) замещение аллелей (хромосом).

Отдаленные скрещивания - межвидовые и межродовые. Обычно отдаленные гибриды бесплодны и их размножают вегетативным путем; для преодоления бесплодия гибридов применяют удвоение числа хромосом, таким путем получают амфидиплоидные организмы: ржано-пшеничные гибриды (тритикале), пшенично-пырейные гибриды.

Соматическая гибридизация - это гибридизация, основанная на слиянии соматических клеток совершенно несходных организмов.

Важнейшим методом селекции был и остается искусственный отбор. Однако процесс отбора включает две группы мероприятий: оценку исходного материала и избирательное размножение (воспроизведение) отобранных организмов или их частей.

Отбором называется процесс дифференциального (неодинакового) воспроизведения генотипов. При этом не следует забывать, что фактически отбор ведется по фенотипам на всех стадиях онтогенеза организмов (особей). Неоднозначные взаимоотношения между генотипом и фенотипом предполагают проверки отобранных растений по потомству.

Существует множество форм искусственного отбора. Рассмотрим более подробно наиболее часто применяемые формы отбора.

Массовый отбор - отбору подвергается вся группа. Например, семена с лучших растений объединяются и высеваются совместно. Массовый отбор считается примитивной формой отбора, поскольку не позволяет устранить влияние модификационной изменчивости. Применяется в семеноводстве. Рекомендуется при селекции новых, вводимых в культуру растений или культур, мало проработанных в селекционном отношении.

Рассмотрим методы оценки исходного материала на примере растений.

В процессе селекции материал оценивают по его хозяйственным и биологическим свойствам, являющимися объектом селекции. Но независимо от особенностей объекта и задач селекции, производится оценка материала по следующим критериям:

Определенный ритм развития, соответствующий почвенно-климатическим условиям, в которых планируется дальнейшая эксплуатация сорта;

Высокая потенциальная продуктивность при высоком качестве продукции;

Устойчивость к неблагоприятному воздействию физико-химических факторов среды (морозоустойчивость, жароустойчивость, засухоустойчивость, устойчивость к различным видам химических загрязнений);

Устойчивость к воздействию болезней и вредителей;

Отзывчивость на агротехнику.

В идеале сорт должен отвечать не отдельным требованиям, а их комплексу. Однако на практике это часто оказывается невозможным, и именно поэтому создание композиций, состоящих из линий (клонов) с разными наследственными свойствами, считается наиболее быстрым и надежным способом повышения общей устойчивости Агро экосистем.

селекция гибридизация отбор искусственный

ВОПРОС № 2.

Видовая и пространственная структура экосистем. Пищевые связи, круговорот веществ и превращения энергии в экосистемах

в) Мюллер

б) Шмальгаузен

г) Ковалевский

Структура экосистемы многопланова. Различают видовую и пространственную структуру.

Видовая структура экосистемы - это разнообразие видов, взаимосвязь и соотношение их численности. Различные сообщества, входящие в состав экосистемы, состоят из разного числа видов - видового разнообразия. В таежном лесу, на площади в 100 м, как правило, произрастают растения около 30 различных видов, а на лугу вдоль реки - в два раза больше.

Видовое разнообразие зависит от соотношения численности видов в экосистеме. Например, в пригородном лесу обитают 1000 птиц: по 100 особей 10 разных видов. В другом пригородном лесу также 1000 птиц этих же 10 видов, но 920 из птиц - вороны и галки (двух видов), а особи остальных 8 видов встречаются значительно реже, в среднем по 10 особей.

Уменьшение видового разнообразия угрожает самому существованию вида в силу сокращения генетического разнообразия - запаса рецессивных аллелей, обеспечивающего приспособленность популяций к меняющимся условиям среды обитания.

В свою очередь, видовое разнообразие служит основой экологического разнообразия - разнообразия экосистем. Совокупность генетического, видового и экологического разнообразия составляет биологическое разнообразие планеты.

Пространственная структура экосистемы.

Популяции разных видов в экосистеме распределены определенным образом - образуют пространственную структуру. Различают вертикальную и горизонтальную структуры экосистемы.

Основу вертикальной структуры формирует растительность.

Растительное сообщество определяет, как правило, облик экосистемы. Растения в значительной мере влияют на условия существования остальных видов. В лесу это крупные деревья, на лугах и в степях - многолетние травы, а в тундрах господствуют мхи и кустарнички.

Обитая совместно, растения одинаковой высоты создают своего рода этажи - ярусы. В лесу, например, высокие деревья составляют первый (верхний) ярус, второй ярус формируется из молодых особей деревьев верхнего яруса и из взрослых деревьев, меньших по высоте. Третий ярус состоит из кустарников, четвертый - из высоких трав. Самый нижний ярус, куда попадает совсем мало света, составляют мхи и низкорослые травы.

Ярусность наблюдается также в травянистых сообществах (лугах, степях, саваннах). Имеется и подземная ярусность, что связано с разной глубиной проникновения в почву корневых систем растений: у одних корни уходят глубоко в почву, достигают уровня грунтовых вод, другие имеют поверхностную корневую систему, улавливающую воду и элементы питания из верхнего почвенного слоя.

Животные тоже приспособлены к жизни в том или ином растительном ярусе (некоторые вообще не покидают свой ярус).

Любое сообщество можно представить в виде пищевой сети, в которой сложно переплетены многочисленные пищевые цепи. По пищевым цепям происходит передача веществ и энергии в экосистеме от звена к звену. Каждое звено в цепи питания называют трофическим (от греч. trofo - питание) уровнем.

Первый трофический уровень составляют продуценты, автотрофные организмы - растения и некоторые бактерии. В основном растения создают органические вещества из неорганических за счет использования энергии солнечного света (фотосинтез), а бактерии - за счет энергии химических реакций окисления минеральных веществ (хемосинтез).

Второй трофический уровень составляют растительноядные животные - консументы. Третий уровень - плотоядные животные (хищники), четвертый уровень - животные, поедающие других плотоядных, и т. д. Многих животных невозможно отнести к одному уровню, так как они всеядны, могут получать энергию с нескольких разных трофических уровней.

Разнообразные вещества и энергия перемещаются от одного трофического уровня к другому по цепям питания по мере поедания одних организмов другими, претерпевая многочисленные превращения. На конечном этапе редуценты полностью разрушают органические вещества, превращают их в минеральные.

Значит, существование всех экосистем зависит от постоянного притока энергии извне. Как осуществляется энергетический обмен в экосистемах?

Всем организмам необходима энергия, а единственным источником практически всей энергии на Земле является Солнце. Однако только 1% световой энергии Солнца улавливается растениями в процессе фотосинтеза и запасается в виде химической энергии, а 99% теряется в виде тепла и расходуется на испарение. Запасенная растениями энергия передается от одного трофического уровня к другому по пищевым цепям. Часть энергии теряется во время превращения веществ пищи в молекулы тела хищника, а часть проходит через кишечный тракт хищника в неизменном виде.

Биогенетический закон Геккеля-Мюллера (также известен под названиями «закон Геккеля», «закон Мюллера-Геккеля», «закон Дарвина-Мюллера-Геккеля», «основной биогенетический закон»): каждое живое существо в своем индивидуальном развитии (онтогенез) повторяет в известной степени формы, пройденного его предками или его видом (филогенез).

Сыграл важную роль в истории развития науки, однако в дальнейшем был опровергнут и в своем исходном виде не признается современной биологической наукой.

Биогенетический Закон, одно из обобщений эволюционной биологии, связывающее индивидуальное развитие, или онтогенез, с историческим развитием, или филогенезом. Биогенетический закон, установленный немецкими учёными Ф. Мюллером (1864) и Э. Геккелем (1866), утверждает, что онтогенез всякого организма есть краткое повторение (рекапитуляция) основных этапов филогенеза вида, к которому данный организм принадлежит.

Биогенетический закон находит множество подтверждений в данных сравнительной анатомии, эмбриологии и палеонтологии. Напр., у зародышей птиц и млекопитающих на определённой стадии эмбрионального развития появляются зачатки жаберного аппарата. Это объясняется тем, что наземные позвоночные произошли от дышавших жабрами рыбообразных предков. Опираясь на биогенетический закон и используя данные эмбриологии, можно воссоздавать ход исторического развития тех или иных групп организмов. Это особенно важно в тех случаях, когда для к.-л. группы неизвестны ископаемые остатки предковых форм, т. е. при неполноте палеонтологической летописи.

Биогенетический закон Геккеля-Мюллера: каждая особь в индивидуальном развитии (онтогенезе) кратко и сжато повторяет историю развития своего вида (филогенез).

а) Примеры у животных:

* Сосуды зародышей сухопутных позвоночных похожи на сосуды рыб;

* У человеческого зародыша есть жаберные щели.

* Гусеницы бабочки и личинки жуков сходны с кольчатыми червями.

* Головастики земноводных сходны с рыбами.

б) Примеры у растений:

* Почечные чешуйки в почке растений развиваются как листья.

* Лепестки бутонов сначала зеленые, приобретают свойственную им окраску.

* Из споры мха сначала появляется зеленая нить, похожая на нитчатую водоросль (предросток).

в) Поправки к биогенетическому закону.

* У зародышей повторение филогенеза может нарушаться в связи с приспособлениями к условиям жизни в онтогенезе. Появляются: зародышевые оболочки, желточный мешок у икринки рыб, наружные жабры у головастика, кокон у шелкопряда.

* Онтогенез не полностью отражает филогенез за счет появления мутаций, изменяющих ход развития зародыша (у зародыша змеи закладываются сразу все позвонки, т.е. их количество не увеличивается постепенно; у птиц выпала пятипалая стадия развития конечности, у зародыша закладываются 4 пальца, а не 5, вырастают же в крыле только 3 пальца).

* В онтогенезе происходит повторение зародышевых стадий развития, а не взрослых форм (Ланцетник повторяет в онтогенезе общие стадии со свободно плавающей личинкой асцидии, а не с ее взрослой, закрепленной формой).

г) Современные представления о биогенетическом законе.

* Северцов показал, что за счет изменений в развитии могут: выпадать некоторые стадии развития зародыша; возникать изменения органов зародыша, которых не было у предков; возникать новые виды; выявляться новые признаки (например, хвостатые (тритоны) и бесхвостые (лягушки) амфибии произошли от одного предка: личинка тритона длинная, т.к. имеет много позвонков, у личинки лягушки число позвонков уменьшилось за счет мутации; у эмбриона ящерицы меньше число позвонков, чем у эмбриона змеи, за счет мутаций развития).

ВОПРОС № 3

Человеческие расы относятся к:

а) трем биологическим видам

б) разным популяциям одного вида

в) разным популяциям разных видов

Вид Человек разумный разделяют на три большие расы: евразийскую (европеоидную), азиатско-американскую (монголоидную) и австрало-негроидную (экваториальную). Представители европеоидной расы характеризуются относительно светлой кожей, мягкими прямыми или волнистыми волосами, тонкими губами, нешироким выступающим носом. У мужчин обычно хорошо растут борода и усы. Внутри расы существует большая изменчивость по цвету волос и глаз, поэтому ее делят на три крупные части: светлоокрашенную северную (скандинавы), темноокрашенную южную (индусы, арабы) и среднеевропейскую с промежуточным типом пигментации.

Типичные представители монголоидной расы обладают смуглой кожей желтоватого оттенка, темно-карими глазами, темными и прямыми жесткими волосами. У мужчин волосяной покров на теле развит слабо. Для большинства монголоидов характерен эпикантус - особая складка верхнего века, которая прикрывает внутренний угол глаза. Нос довольно узкий. Для представителей экваториальной расы характерны черные курчавые волосы, очень темная кожа и карие глаза. Борода и усы у мужчин растут слабо. Нос довольно плоский, мало выступающий, с широкими крыльями. У большинства представителей толстые губы и выступающий челюстной отдел черепа.

Основные человеческие расы

В современном человечестве выделяют три основные расы: европеоидную, монголо-идную и негроидную. Это большие группы людей, отличающиеся некоторыми физическими признаками, например чертами лица, цветом кожи, глаз и волос, формой волос.Для каждой расы характерно единство происхождения и формирования на определенной территории.

К европеоидной расе относится коренное население Европы, Южной Азии и Северной Африки. Европеоиды характеризуются узким лицом, сильно выступающим носом, мягкими волосами. Цвет кожи у северных европеоидов светлый, у южных - преимущественно смуглый.

К монголоидной расе относится коренное население Центральной и Восточной Азии, Индонезии, Сибири. Монголоиды отличаются крупным плоским широким лицом, разрезом глаз, жесткими прямыми волосами, смуглым цветом кожи.

В негроидной расе выделяют две ветви - африканскую и австралийскую. Для негроидной расы характерны темный цвет кожи, курчавые волосы, темные глаза, широкий и плоский нос.

Расовые особенности наследственные, но в настоящее время они не имеют существенного значения для жизнедеятельности человека. По-видимому, в далеком прошлом расовые признаки были полезны для их обладателей: темная кожа негров и курчавые волосы, создающие вокруг головы воздушный слой, предохраняли организм от действия солнечных лучей, форма лицевого скелета монголоидов с более обширной носовой полостью, возможно, является полезной для обогрева холодного воздуха перед тем, как он попадает в легкие. По умственным способностям, т. е. способностям к познанию, творческой и вообще трудовой деятельности, все расы одинаковы. Различия в уровне культуры связаны не с биологическими особенностями людей разных рас, а с социальными условиями развития общества. Первоначально некоторые ученые путали уровень социального развития с биологическими особенностями и пытались среди современных народов найти переходные формы, связывающие человека с животными. Эти ошибки использовали расисты, которые стали говорить о якобы существующей неполноценности одних рас и народов и превосходстве других, чтобы оправдать беспощадную эксплуатацию и прямое уничтожение многих народов в результате колонизации, захват чужих земель и развязывание войн.

Несостоятельность расизма доказана настоящей наукой о расах - расоведением. Расоведение изучает расовые особенности, происхождение, формирование и историю человеческих рас. Данные, полученные расоведением, свидетельствуют о том, что различия между расами недостаточны для того, чтобы считать расы различными биологическими видами людей. Смешение рас - метисация - происходило постоянно, в результате чего на границах ареалов представителей различных рас возникали промежуточные типы, сглаживающие различия между расами.

ВОПРОС № 4

Гусеницы бабочки сходны с кольчатыми червями - это доказательство эволюции из области науки:

а) биогеографии б) эмбриологии

в) сравнительной анатомии г) палеонтологи

Палеонтологические доказательства эволюции

Палеонтология - наука об органическом мире прошедших геологических эпох, т. е. об организмах, когда-то живших на Земле, а ныне вымерших. В палеонтологии выделяют палеозоологию и палеоботанику.

Палеозоология изучает остатки ископаемых животных, а палеоботаника - остатки ископаемых растений. Палеонтология прямо доказывает, что органический мир Земли в разные геологические эпохи был различен, он изменялся и развивался от примитивных форм организмов к более высокоорганизованным формам. Палеонтологические исследования позволяют установить историю развития разных форм организмов на Земле, выявить родственные (генетические) связи между отдельными организмами, что способствует созданию естественной системы органического мира Земли. Для обоснования теории эволюции Ч. Дарвин широко использовал многочисленные доказательства из области палеонтологии, биогеографии, морфологии. Впоследствии были получены факты, воссоздающие историю развития органического мира и служащие новыми доказательствами единства происхождения живых организмов и изменяемости видов в природе.

Палеонтологические находки - едва ли не самые убедительные доказательства протекания эволюционного процесса. К ним относятся окаменелости, отпечатки, ископаемые остатки, ископаемые переходные формы, филогенетические ряды, последовательность ископаемых форм. Рассмотрим более подробно некоторые из них.

Ископаемые переходные формы - формы организмов, сочетающие признаки более древних и молодых групп. Среди растений особый интерес представляют псилофиты. Они произошли от водорослей, первыми из растений осуществили переход на сушу и дали начало высшим споровым и семенным растениям. Семенные папоротники - переходная форма между папоротниковидными и голосеменными, а саговниковые - между голосеменными и покрытосеменными.

Среди ископаемых позвоночных можно выделить формы, являющиеся переходными между всеми классами этого подтипа. Например, древнейшая группа кистеперых рыб дала начало первым земноводным - стегоцефалам. Это было возможно благодаря характерному строению скелета парных плавников кистеперых рыб, имевших анатомические предпосылки для превращения их в пятипалые конечности первичных земноводных. Известны формы, образующие переход между рептилиями и млекопитающими. К ним относятся звероящеры (иностранцевия) А связующим звеном между пресмыкающимися и птицами явилась первоптица (археоптерикс).

Палеонтологические ряды - ряды ископаемых форм, связанные друг с другом в процессе эволюции и отражающие ход филогенеза (от греч. phylon - род, племя, genesis - происхождение). Классическим примером применения рядов ископаемых форм для выяснения истории отдельной группы животных является эволюция лошади. Русский ученый В.О. Ковалевский (1842-1883) показал постепенность эволюции лошади, установив, что сменяющие друг друга ископаемые формы приобретали все большее сходство с современными.

Современные однопалые животные произошли от мелких пятипалых предков, живших в лесах 60-70 млн лет назад. Изменение климата привело к увеличению площади степей и расселению по ним лошадей. Передвижение на большие расстояния в поиске пищи и при защите от хищников способствовало преобразованию конечностей. Параллельно увеличивались размеры тела, челюстей, усложнялось строение зубов и др.

К настоящему времени известно достаточное количество палеонтологических рядов (хоботных, хищных, китообразных, носорогов, некоторых групп беспозвоночных), которые доказывают существование эволюционного процесса и возможность происхождения одного вида от другого.

В заключение можно сделать вывод о том, что кратко рассмотренные явления доказывают, что органический мир Земли находится в состоянии постоянного медленного постепенного развития, т. е. эволюции, при этом развитие шло и идет от простого к сложному.

ВОПРОС № 5

Ученый, имевший метафизические взгляды на эволюцию:

а) К. Линней б) Ламарк

в) Ч. Дарвин г) А. Уоллес

Эволюционная идея - как идея исторического развития живой природы и изменяемости видов зародилась очень давно. Во II-I тысячелетиях до н.э. в Китае и Индии существовали учения о возможности превращения одних живых существ в другие, о происхождении человека от обезьян. Мысли о естественном развитии всех живых существ из первичной материи встречаются у философов Древней Греции Гераклита и Аристотеля.

Однако между эволюционными преставлениями древних мыслителей и современных ученых сходство чисто внешнее. Взгляды древних мыслителей имели характер догадок, без строгого научного обоснования фактами. Древние цивилизации в Европе сменила эпоха Средневековья. Преобладающей стала идея неизменности всего живого на Земле.

Эволюционные представления оформились в виде учения лишь с возникновением в философии материалистического мировоззрения. Господствовавшее до того идеалистическое мировоззрение провозглашало творцом всей природы Бога. А согласно материалистическому учению, первоначально возникла неживая, а затем живая природа и в ходе ее длительного развития появились высокоразвитые существа. Их никто не создавал, они - следствие эволюционных преобразований материи, вершиной которой стал человек.

С накоплением научной информации меняются взгляды в философии - формируется материалистическое учение; в биологии появляются первые представления об эволюции, содержавшиеся уже в поздних работах К. Линнея, а затем эволюционное учение Ж.-Б. Ламарка (XVIII-XIX вв.).

В России еще в XVIII в. складывались эволюционные представления, которые нашли отражения в трудах М. В. Ломоносова и А. Н. Радищева. В XIX веке исследованиями зародышевого развития животных большой вклад в науку внес К. М. Бэр; разработанные им закономерности были отмечены Ч. Дарвином и названы «законом зародышевого сходства». Зоолог К. Ф. Рулье обосновал положение о взаимосвязях организма и внешней среды. Проанализировав значение наследственности и изменчивости, как условий для приспособления видов к окружающей среде, он пришел к выводу, что это процесс постепенный, эволюционный. В классическом труде А. И. Герцена «Письма об изучении природы» утверждается, что материя никем не сотворена и не уничтожаема, а все ее формы и свойства - продукт ее развития.

Вклад в науку К. Линнея (1707-1778 гг.)

Открыл около 1,5 тыс. видов растений; - описал около 10 тыс. видов растений и около 4,5 тыс. видов животных;

Разработал короткие и четкие определения каждой группы организмов, что значительно облегчало их описание; - дал определение понятия «вид».

Ввел в науку латынь и удобную бинарную (двойную) номенклатуру вместо употреблявшихся ранее громоздких полиноминальных названий; эта номенклатура употребляется в наше время («Система природы», 1735);

Разработал принципы построения классификации живой природы («Философия ботаники»). На этих принципах он построил новую научную систему живой природы, которая включала в себя всех известных в то время животных и все растения и была самой совершенной для того времени;

в упорядочении быстро накапливающихся знаний привела к необходимости систематизировать их. Создаются практические зависимости от их пользы для человека или приносимого ими вреда.

К. Линней создал самую совершенную для того времени систему органического мира, включив в нее всех известных тогда животных и растений. Он во многих случаях правильно объединил виды организмов по сходству строения. Система К. Линнея была искусственной, так как не отражала родства и сходства растений и животных по совокупности существенных черт строения, не указывала единство происхождения живых организмов. К. Линней сознавал искусственность своей системы и указывал на необходимость разработки естественной системы природы. Он писал: «Искусственная система служит только до тех пор, пока не найдена естественная».

По своему мировоззрению К. Линней был метафизиком и креационистом. Согласно метафизическим представлениям, природа является чем-то застывшим, не изменяющимся во времени. Во времена господства религиозных представлений ученые полагали, что виды организмов созданы независимо друг от друга Творцом и неизменны. «Видов столько, - отмечал К. Линней, - сколько различных форм создал в начале мира Всемогущий». Вот почему поиски естественной природы означали для биологов попытки проникновения в план творения, которым руководствовался Бог, создавая все живое на земле.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Сивоглазов Н.И., Агафонова И.Б., Захарова Е.Т. Общая биология. Базовый уровень. 10 - 11 класс. - М.: Дрофа, 2005.

2. Беляев Д.К. Общая биология: учебное пособие для 10-11 класса общеобразовательных учреждений/ П.М. Бородин, Н.Н. Воронцов и др.- Москва: Просвещение, 2002.

3. Сивкова В.В. Новый справочник школьника 5-11 класс. Универсальное пособие. ИД «Весь», Санкт-Петербург- 2002.

4. Анастасова Л.П. и др. «Человек и окружающая среда» (М., «Просвещение», 1981 г.) 9 класс

5. Морозов Е.И., Тарасевич Е.И., Анохина В.С. Генетика в вопросах и ответах. Минск. «Университетское». 1989.

6. Фогель Ф., Мотульски А. Генетика человека. Москва. «Мир». 1990.

7. Демьяненков Е.Н. Биология в вопросах и ответах. - Москва, 1996.

8. Короткова Л.С. Дидактический материал по общей биологии 10класс. Москва «Просвещение»1984г.

9. Никешов А.И. Справочник школьника по биологии 6-9 классы.

Москва «Дрофа» 1996г.

10. Дмитриева Т.А. Дидактические материалы: Биология. Человек. Общая биология. М Дрофа 2002г.

РЕЦЕНЗИЯ

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Размещено на Allbest.ru

...

Подобные документы

    Задачи современной селекции, породы животных и сорта растений. Центры многообразия и происхождения культурных растений. Основные методы селекции растений: гибридизация и отбор. Самоопыление перекрестноопылителей (инбридинг), сущность явления гетерозиса.

    реферат , добавлен 13.10.2009

    Учение о предковых формах как один из разделов селекции. Цепочка эволюционных изменений. Учения Чарльза Дарвина. Центры происхождения культурных растений в учении академика Н.И. Вавилова. Преимущества генетического разнообразия исходного материала.

    реферат , добавлен 21.01.2016

    Селекция как наука о методах создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов. Центры происхождения культурных растений. Закон гомологических рядов. Индуцированный мутагенез. Полиплоидия и гибридизация в селекции.

    презентация , добавлен 09.12.2011

    Характеристика основных методов селекции растений. Особенности искусственного и естественного отбора. Цели применения инбридинга и перекрестного опыления самоопылителей. Содержание гипотез, объясняющих эффект гетерозиса. Сущность отдаленной гибридизации.

    презентация , добавлен 28.04.2013

    Основные методы селекции - гибридизация и отбор, их характеристика и виды. Центры происхождения культурных растений. Вклад работ Мичурина в развитие селекции растений, его методы преодоления нескрещиваемости видов. Использование искусственного мутагенеза.

    презентация , добавлен 12.03.2014

    Рассмотрение истории возникновения и развития селекции как научной дисциплины под воздействием работ Менделя, Дарвина, Герасимова. Ознакомление с методами отбора и гибридизации растений. Основные способы скрещивания животных: аутбридинг и инбридинг.

    реферат , добавлен 01.10.2010

    Биография Н.И. Вавилова как выдающегося генетика, селекционера, организатора сельскохозяйственной и биологической науки в России. Открытие закона гомологических рядов в наследственной изменчивости. Учение о центрах происхождения культурных растений.

    доклад , добавлен 24.06.2008

    Понятие селекции как эволюции, управляемой человеком. Выведение новых сортов растений и пород животных для человека свойствами как основная задача селекционеров. Методы селекции: отбор, гибридизация, мутагенез. Центры происхождения культурных растений.

    презентация , добавлен 23.02.2013

    Отличия животных от растений. Особенности отбора животных для селекции. Что такое гибридизация, ее классификация. Современные разновидности селекции животных. Сферы использования микроорганизмов, их полезные свойства, методы и особенности селекции.

    презентация , добавлен 26.05.2010

    Гаметогенез и развитие растений. Основы генетики и селекции. Хромосомная теория наследственности. Моногибридное, дигибридное и анализирующее скрещивание. Сцепленное наследование признаков, генетика пола. Наследование признаков, сцепленных с полом.